某理科考生参加自主招生面试,从7道题中(4道理科题3道文科题)不放回地依次任取3道作答.
(1)求该考生在第一次抽到理科题的条件下,第二次和第三次均抽到文科题的概率;
(2)规定理科考生需作答两道理科题和一道文科题,该考生答对理科题的概率均为,答对文科题的概率均为
,若每题答对得10分,否则得零分.现该生已抽到三道题(两理一文),求其所得总分
的分布列与数学期望
.
已知抛物线D的顶点是椭圆Q:的中心O,焦点与椭圆Q的右焦点重合,点
是抛物线D上的两个动点,且
(1)求抛物线D的方程及y1y2的值;
(2)求线段AB中点轨迹E的方程;
(3)在曲线E上寻找一点,使得该点与直线的距离最近.
如图所示,在直三棱柱中,
,
,
,
,
是棱
的中点.
(1)证明:平面
;
(2)求二面角的余弦值.
已知函数上单调递增,在(-1,2)上单调递减,又函数
.
(1)求函数的解析式;
(2)求证当
如图,平面
,四边形
是正方形,
,点
、
、
分别为线段
、
和
的中点. 在线段
上是否存在一点
,使得点
到平面
的距离恰为
?若存在,求出线段
的长;
若不存在,请说明理由.
设函数.
(1)求f(x)的单调区间;
(2)若当x∈[-2,2]时,不等式f(x)>m恒成立,求实数m的取值范围