设二次函数的图象以轴为对称轴,已知,而且若点在的图象上,则点在函数的图象上(1)求的解析式(2)设,问是否存在实数,使在内是减函数,在内是增函数。
设数列{n}满足1=,n+1=n2+1,. (Ⅰ)当∈(-∞,-2)时,求证:M; (Ⅱ)当∈(0,]时,求证:∈M; (Ⅲ)当∈(,+∞)时,判断元素与集合M的关系,并证明你的结论.
某大楼共5层,4个人从第一层上电梯,假设每个人都等可能地在每一层下电梯,并且他们下电梯与否相互独立. 又知电梯只在有人下时才停止. (Ⅰ)求某乘客在第层下电梯的概率; (Ⅱ)求电梯在第2层停下的概率; (Ⅲ)求电梯停下的次数的数学期望.
求函数最大值.
在极坐标系下,已知圆和直线. (1)求圆和直线的直角坐标方程; (2)当时,求直线与圆公共点的极坐标.
已知M=,试计算
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号