已知平面直角坐标系中点F(1,0)和直线,动圆M过点F且与直线
相切。
(1)求M的轨迹L的方程;
(2)过点F作斜率为1的直线交曲线L于A、B两点,求|AB|的值。
设分别是椭圆:
的左、右焦点,过
倾斜角为
的直线
与该椭圆相交于P,
两点,且
.
(Ⅰ)求该椭圆的离心率;
(Ⅱ)设点满足
,求该椭圆的方程.
函数,过曲线
上的点P
的切线方程为
(1)若在
时有极值,求
的表达式;
(2)在(1)的条件下,求在[-3,1]上的最大值;
(3)若函数在区间[-2,1]上单调递增,求实数b的取值范围.
在数列中,已知
.
(Ⅰ)求数列的通项公式;
(Ⅱ)求证:数列是等差数列;
(Ⅲ)设数列满足
,求
的前n项和
.
如图,在四棱锥ABCD-PGFE中,底面ABCD是直角梯形,侧棱垂直于底面,AB//DC,∠ABC=45o,DC=1,AB=2,PA=1.
(Ⅰ)求PD与BC所成角的大小;
(Ⅱ)求证:BC⊥平面PAC;
(Ⅲ)求二面角A-PC-D的大小.
在△ABC中 ,角、
、
所对的边分别为
、
、
,已知向量
,且
.
(Ⅰ) 求角A的大小;
(Ⅱ) 若,
,求△ABC的面积.