某市为了保障民生,防止居民住房价格过快增长,计划出台合理的房价调控政策,为此有关部门抽样调查了100个楼盘的住房销售价格,右表是这100个楼盘住房销售均价(单位:千元/平米)的频率分布表,根据右表回答以下问题:
(1)求右表中a,b的值;
(2)请将下面的频率分布直方图补充完整,并根据直方图估计该市居民住房销售价格在4千元/平米到8千元/平米之间的概率.
分组 |
频数 |
频率 |
[2,3) |
5 |
0.05 |
[3,4) |
10 |
0.10 |
[4,5) |
a |
0.15 |
[5,6) |
24 |
0.24 |
[6,7) |
18 |
0.18 |
[7,8) |
12 |
b |
[8,9) |
8 |
0.08 |
[9,10) |
8 |
0.08 |
合计 |
100 |
1.00 |
如图,已知三角形△ABC与△BCD所在平面相互垂直,且∠BAC=∠BCD=90°,AB=AC,CB=CD,点P,Q分别在线段BD,CD上,沿直线PQ将△PQD向上翻折,使D与A重合.
(Ⅰ)求证:AB⊥CQ;
(Ⅱ)求BP的长;
(Ⅲ)求直线AP与平面BCD所成的角.
已知a,b,c分别为△ABC三个内角A,B,C的对边,a2=b2+c2﹣bc.
(Ⅰ)求A;
(Ⅱ)若a=2,求bsinB+csinC的最大值.
在等差数列{an}和等比数列{bn}中,a1=1,b1=2,bn>0(n∈N*),且b1,a2,b2成等差数列,a2,b2,a3+2成等比数列,数列{bn}的前n项和为Sn.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)若Sn+an>m对任意的正整数n恒成立,求常数m的取值范围.
已知二次函数f(x)=ax2+bx+c(a>0).
(Ⅰ)(i)若b=﹣2,且f(x)在(1,+∞)上为单调递增函数,求实数a的取值范围;
(ii)若b=﹣1,c=1,当x∈[0,1]时,|f(x)|的最大值为1,求实数a的取值范围;
(Ⅱ)若f(0)≥1,f(1)≥1,f(x)=0的有两个小于1的不等正根,求a的最小正整数值.
已知椭圆C:+
=1(a>b>0),直线l:y=kx+m(k≠0,m≠0),直线l交椭圆C与P,Q两点.
(Ⅰ)若k=1,椭圆C经过点(,1),直线l经过椭圆C的焦点和顶点,求椭圆方程;
(Ⅱ)若k=,b=1,且kOP,k,kOQ成等比数列,求三角形OPQ面积S的取值范围.