一个四棱椎的三视图如图所示:(I)求证:PA⊥BD;
(II)在线段PD上是否存在一点Q,使二面角Q-AC-D的平面角为30o?若存在,求的值;若不存在,说明理由.
在一次联考后,某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于分为优秀,
分以下为非优秀,统计成绩后,得到如下的
列联表,且已知在甲、乙两个文科班全部
人中随机抽取人为优秀的概率为
.
优秀 |
非优秀 |
合计 |
|
甲班 |
![]() |
||
乙班 |
![]() |
||
合计 |
![]() |
(1)请完成上面的列联表;
(2)根据列联表的数据,能否有的把握认为成绩与班级有关系?
(3)在甲、乙两个理科班优秀的学生中随机抽取两名学生,用表示抽得甲班的学生人数,求
的分布列.
设向量,
,
.
(1)若,求
的值;
(2)设函数,求
的最大、最小值.
已知函数,
,
(Ⅰ)若,求函数
的极值;
(Ⅱ)若函数在
上单调递减,求实数
的取值范围;
(Ⅲ)在函数的图象上是否存在不同的两点
,使线段
的中点的横坐标
与直线
的斜率
之间满足
?若存在,求出
;若不存在,请说明理由.
已知抛物线与双曲线
有公共焦点
,点
是曲线
在第一象限的交点,且
.
(Ⅰ)求双曲线的方程;
(Ⅱ)以双曲线的另一焦点
为圆心的圆
与直线
相切,圆
:
.过点
作互相垂直且分别与圆
、圆
相交的直线
和
,设
被圆
截得的弦长为
,
被圆
截得的弦长为
,问:
是否为定值?如果是,请求出这个定值;如果不是,请说明理由.
知等差数列的公差
大于0,且
是方程
的两根,数列
的前
项和为
.
(Ⅰ)求数列的通项公式;
(Ⅱ)记,求证:
;
(Ⅲ)求数列的前
项和
.