如图所示,四边形ABCD是边长为1的正方形,MD⊥平面ABCD,NB⊥平面ABCD,且MD=NB=1,E为BC的中点.
(1)求异面直线NE与AM所成角的余弦值;
(2)在线段AN上是否存在点S,使得ES⊥平面AMN?若存在,求线段AS的长;若不存在,请说明理由.
某校从参加某次知识竞赛的同学中,选取60名同学将其成绩(百分制)(均为整数)分成6组后,得到部分频率分布直方图(如图),观察图形中的信息,回答下列问题.
(Ⅰ)求分数在[70,80)内的频率,并补全这个频率分布直方图;
(Ⅱ)从频率分布直方图中,估计本次考试的平均分;
(Ⅲ)若从60名学生中随机抽取2人,抽到的学生成绩在[40,70)记0分,在[70,100]记1分,用X表示抽取结束后的总记分,求X的分布列和数学期望.
如图,在底面是正方形的四棱锥P—ABCD中,平面PCD⊥平面ABCD,PC=PD=CD=2.
(I)求证:PD⊥BC;
(II)求二面角B—PD—C的正切值。
在△ABC中,角A、B、C的对边分别为a、b、c,向量=(sinA,b+c),
=(a-c,sinC-sinB),满足
=
(Ⅰ)求角B的大小;
(Ⅱ)设=(sin(C+
),
),
=(2k,cos2A) (k>1),
有最大值为3,求k的值.
已知函数(
为实数).
(Ⅰ)当时,求
的最小值;
(Ⅱ)若在
上是单调函数,求
的取值范围.
设的导数为
,若函数
的图象关于直线
对称,且
.
(Ⅰ)求实数,
的值;
(Ⅱ)求函数的单调区间.