已知的三个内角A、B、C所对的边分别为
,向量
,且
.
(Ⅰ)求角A的大小;
(Ⅱ)若,试判断
取得最大值时
形状
已知函数.
(1)求的值及函数
的单调递增区间;
(2)求函数在区间
上的最大值和最小值.
从中这
个数中取
(
,
)个数组成递增等差数列,所有可能的递增等差数列的个数记为
.
(1)当时,写出所有可能的递增等差数列及
的值;
(2)求;
(3)求证:.
已知椭圆经过点
,离心率为
.
(1)求椭圆的方程;
(2)直线与椭圆
交于
两点,点
是椭圆
的右顶点.直线
与直线
分别与
轴交于点
,试问以线段
为直径的圆是否过
轴上的定点?若是,求出定点坐标;若不是,说明理由.
已知函数,
.
(1)求函数的单调区间;
(2)若函数在区间
的最小值为
,求
的值.
如图,四棱锥的底面为正方形,侧面
底面
.
为等腰直角三角形,且
.
,
分别为底边
和侧棱
的中点.
(1)求证:∥平面
;
(2)求证:平面
;
(3)求二面角的余弦值.