为缓解“停车难”的问题,某单位拟建造地下停车库,建筑设计师提供了该地下停车库的设计示意图,按规定,地下停车库坡道口上方要张贴限高标志,以便告知停车人车辆能否安全驶入,为标明限高,请你根据该图计算CE.(精确到0.1m)
(下列数据提供参考:20°=0.3420,
20°=0.9397,
20°=0.3640)
(本小题满分10分) 如图,在矩形ABCD中,E、F分别是边AB、CD上的点,AE=CF,连接EF、BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC.
(1)求证:OE=OF;
(2)若BC=2,求AB的长.
(本小题满分10分)如图,一次函数y1=+1的图象与反比例函数
(k为常数,且k≠0)的图象都经过点A(m,2).
(1)求点A的坐标及反比例函数的表达式;
(2)结合图象直接比较:当>0时,
与
的大小.
(本小题满分8分)新华商场销售某种空调,每台进货价为2500元.市场调研表明:当销售价为2900元时,平均每天能售出8台;而当销售价每降低50元时,平均每天就能多售出4台.商场要想使这种空调的销售利润平均每天达到5000元,每台空调的定价应为多少元?
(本小题满分10分)如图,为了测量某风景区内一座塔AB的高度,某人分别在塔的对面一楼房CD的楼底C、楼顶D处,测得塔顶A的仰角为45°和30°,已知楼高CD为10m,求塔的高度.(结果精确到0.1m)(参考数据≈1.41,
≈1.73)
已知:如图,⊙与
轴交于C、D两点,圆心
的坐标为(1,0),⊙
的半径为
,过点C作⊙
的切线交
轴于点B(-4,0).
(1)求切线BC的解析式;
(2)若点P是第一象限内⊙上一点,过点P作⊙A的切线与直线BC相交于点G,且∠CGP=120°,求点
的坐标;
(3)向左移动⊙(圆心
始终保持在
轴上),与直线BC交于E、F,在移动过程中是否存在点
,使得△AEF是直角三角形?若存在,求出点
的坐标,若不存在,请说明理由.