某机构为了研究人的脚的大小与身高之间的关系,随机测量了20人,得到如下数据
身高(厘米) |
192 |
164 |
172 |
177 |
176 |
159 |
171 |
166 |
182 |
166 |
脚长(码) |
48 |
38 |
40 |
43 |
44 |
37 |
40 |
39 |
46 |
39 |
身高(厘米) |
169 |
178 |
167 |
174 |
168 |
179 |
165 |
170 |
162 |
170 |
脚长(码) |
43 |
41 |
40 |
43 |
40 |
44 |
38 |
42 |
39 |
41 |
(1)若“身高大于175厘米”的为“高个”,“身高小于等于175厘米”的为“非高个”;“脚长大于42码”的为“大脚”,“脚长小于等于42码”的为“非大脚”,请根据上表数据完成下面的2×2列联表。
|
高个 |
非高个 |
合计 |
大脚 |
|
|
|
非大脚 |
|
12 |
|
合计 |
|
|
20 |
(2)根据(1)中的2×2列联表,若按99%可靠性要求,能否认为脚的大小与身高之间有关系。
![]() |
0.050 0.010 0.001 |
![]() |
3.841 6.635 10.828 |
参考公式
已知函数
(1)求的值;
(2)求函数的最小正周期及单调递减区间
已知函数(
为常数,
且
)的图象过点
.
(1)求实数的值;
(2)若函数,试判断函数
的奇偶性,并说明理由
已知函数,其中
.
(Ⅰ)讨论的单调性;
(Ⅱ)设曲线与
轴正半轴的交点为P,曲线在点P处的切线方程为
,求证:对于任意的正实数
,都有
;
(Ⅲ)若关于的方程
有两个正实根
,求证:
.
已知椭圆的左焦点为
,离心率为
,点M在椭圆上且位于第一象限,直线
被圆
截得的线段的长为c,
.
(Ⅰ)求直线的斜率;
(Ⅱ)求椭圆的方程;
(Ⅲ)设动点在椭圆上,若直线
的斜率大于
,求直线
(
为原点)的斜率的取值范围.
已知数列满足
,且
成等差数列.
(Ⅰ)求的值和
的通项公式;
(Ⅱ)设,求数列
的前
项和.