(本小题满分14分)
省环保研究所对市中心每天环境放射性污染情况进行调查研究后,发现一天中环境综合放射性污染指数与时刻
(时)的关系为
,其中
是与气象有关的参数,且
,若用每天
的最大值为当天的综合放射性污染指数,并记作
.
(1)令,
,求t的取值范围;
(2)省政府规定,每天的综合放射性污染指数不得超过2,试问目前市中心的综合放射性
污染指数是否超标?
(本小题满分12分)的内角
,
,
的对边分别为
,
,
,
,
.
(1)求角;
(2)若,求
的面积.
(本小题满分10分)选修4-5:不等式选讲
设函数,
.
(1)当时,解不等式
;
(2)画出函数的图象,根据图象求使
恒成立的实数
的取值范围.
(本小题满分10分)选修4-4:坐标系与参数方程
已知在直角坐标系中,圆锥曲线
的参数方程为
(
为参数),定点
,
是圆锥曲线
的左、右焦点.
(1)以坐标原点为极点,轴正半轴为极轴建立极坐标系,求经过点
且平行于直线
的直线
的极坐标方程;
(2)设(1)中直线与圆锥曲线
交于
两点,求
.
(本小题满分10分)选修4-1:几何证明选讲
如图,为
上的三个点,
是
的平分线,交
于点
,过
作
的切线交
的延长线于点
.
(1)证明:平分
;
(2)证明:.
(本小题满分12分)已知函数(
).
(1)讨论的单调性;
(2)若对任意
恒成立,求实数
的取值范围(
为自然常数);
(3)求证(
,
).