B选修4-4:坐标系与参数方程(本小题满分10分)
在直角坐标系中,直线
的参数方程为
(
为参数),若以直角坐标系
的
点为极点,
为极轴,且长度单位相同,建立极坐标系,得曲线
的极坐标方程为
.
(1)求直线的倾斜角;
(2)若直线与曲线
交于
两点,求
.
(本小题满分12分)已知数列为等差数列,其中
.
(1)求数列的通项公式;
(2)若数列满足
,
为数列
的前
项和,当不等式
(
)恒成立时,求实数
的取值范围.
(本小题满分12分)如图,已知四边形ABCD为正方形,平面
,
∥
,且
(1)求证:平面
;
(2)求二面角的余弦值.
(本小题满分12分)
由于我市去年冬天多次出现重度污染天气,市政府决定从今年3月份开始进行汽车尾气的整治,为降低汽车尾气的排放量,我市某厂生产了甲、乙两种不同型号的节排器,分别从两种节排器中随机抽取100件进行性能质量评估检测,综合得分情况的频率分布直方图如图所示.
节排器等级如表格所示
综合得分K的范围 |
节排器等级 |
![]() |
一级品 |
![]() |
二级品 |
![]() |
三级品 |
若把频率分布直方图中的频率视为概率,则
(1)如果从甲型号中按节排器等级用分层抽样的方法抽取10件,然后从这10件中随机抽取3件,求至少有2件一级品的概率;
(2)如果从乙型号的节排器中随机抽取3件,求其二级品数的分布列及数学期望.
(本小题满分12分)已知函数,其中A、B、C是
的三个内角,且满足
,
.
(1)求的值;
(2)若,且
,求
的值.
(本小题满分18分)已知数列,
.
(1)求证:数列为等比数列;
(2)数列中,是否存在连续的三项,这三项构成等比数列?试说明理由;
(3)设,其中
为常数,且
,
,求
.