游客
题文

提出问题:如图,有一块分布均匀的等腰三角形蛋糕(,且),在蛋糕的边缘均匀分布着巧克力,小明和小华决定只切一刀将这块蛋糕平分(要求分得的蛋糕和巧克力质量都一样).
背景介绍:这条分割直线即平分了三角形的面积,又平分了三角形的周长,我们称这条线为三角 形的“等分积周线”.
尝试解决:
 (1)小明很快就想到了一条分割直线,而且用尺规作图作出.请你帮小明在图1中画出这条“等分积周线”,从而平分蛋糕.
(2) 小华觉得小明的方法很好,所以自己模仿着在图1中过点C画了一条直线CDAB于点D.你觉得小华会成功吗?如能成功,说出确定的方法;如不能成功,请说明理由.
(3)通过上面的实践,你一定有了更深刻的认识.请你解决下面的问题:若ABBC=5 cm,AC=6 cm,请你找出△ABC的所有“等分积周线”,并简要的说明确定的方法.

科目 数学   题型 解答题   难度 较难
知识点: 相似多边形的性质
登录免费查看答案和解析
相关试题

如图,在平面直角坐标系xOy中,抛物线过点,这条抛物线的对称轴与x轴交于点C,点P为射线CB上一个动点(不与点C重合),点D为此抛物线对称轴上一点,且CPD=
(1)求抛物线的解析式;
(2)若点P的横坐标为m,△PCD的面积为S,求S与m之间的函数关系式;
(3)过点P作PE⊥DP,连接DE,F为DE的中点,试求线段BF的最小值.

在△ABC中,AB=AC,∠A=300,将线段BC绕点B逆时针旋转600得到线段BD,再将线段BD平移到EF,使点E在AB上,点F在AC上.
(1)如图1,直接写出∠ABD和∠CFE的度数;
(2)在图1中证明:AE=CF;
(3)如图2,连接CE,判断△CEF的形状并加以证明.

已知关于的一元二次方程
(1)求证:方程总有两个实数根;
(2)若m为整数,当此方程有两个互不相等的负整数根时,求m的值;
(3)在(2)的条件下,设抛物线与x轴交点为A、B(点B在点A的右侧),与y轴交于点C.点O为坐标原点,点P在直线BC上,且OP=BC,求点P的坐标.

问题:如图1,在△ABC中,BE平分∠ABC,CE平分∠ACB.若∠A=800,则∠BEC=;若∠A=n0,则∠BEC=
探究:
(1)如图2,在△ABC中,BD、BE三等分∠ABC,CD、CE三等分∠ACB.若∠A=n0,则∠BEC=
(2)如图3,在△ABC中,BE平分∠ABC,CE平分外角∠ACM.若∠A=n0,则∠BEC=
(3)如图4,在△ABC中,BE平分外角∠CBM,CE平分外角∠BCN.若∠A=n0,则∠BEC=

如图,⊙O是△ABC的外接圆,AB=AC,过点A作AD∥BC交BO的延长线于点D.
(1)求证:AD是⊙O的切线;
(2)若⊙O的半径OB=5,BC=8,求线段AD的长.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号