已知焦点在X轴上的椭圆C为.,F1、F2分别是椭圆C的左、右焦点,离心率e=
.
(I )求椭圆C的方程;
(II) 设点Q的坐标为(1,0),椭圆上是否存在一点P,使得直线都与以Q为圆心的一个圆相切,如存在,求出P点坐标及圆的方程,如不存在,请说明理由.
定义:若各项为正实数的数列满足
,则称数列
为“算术平方根递推数列”.
已知数列满足
且
点
在二次函数
的图像上.
(1)试判断数列是否为算术平方根递推数列?若是,请说明你的理由;
(2)记,求证:数列
是等比数列,并求出通项公式
;
(3)从数列中依据某种顺序自左至右取出其中的项
,把这些项重新组成一个新数列
:
.若数列
是首项为
、公比为
的无穷等比数列,且数列
各项的和为
,求正整数
的值.
已知函数,函数
是函数
的反函数.
(1)求函数的解析式,并写出定义域
;
(2)设,若函数
在区间
内的图像是不间断的光滑曲线,求证:函数
在区间
内必有唯一的零点(假设为
),且
.
已知函数.
(1)求函数的单调递增区间;
(2)在中,内角
所对边的长分别是
,若
,求
的面积
的值.
在长方体中,
,
分别是所在棱
的中点,点
是棱
上的动点,联结
.如图所示.
(1)求异面直线所成角的大小(用反三角函数值表示);
(2)求以为顶点的三棱锥的体积.
设满足约束条件
若目标函数
的最大值为10,则
的最小值为