(本小题满分13分)已知椭圆
的离心率为
,以原点为圆心,椭圆短半轴长为半径的圆与直线
相切,
分别是椭圆的左右两个顶点,
为椭圆
上的动点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若
与
均不重合,设直线
与
的斜率分别为
,证明:
为定值;
(Ⅲ)
为过
且垂直于
轴的直线上的点,若
,求点
的轨迹方程,并说明轨迹是什么曲线.
设等差数列
的前n项和为
,且
,
(1).求数列
的通项公式;
(2).若
成等比数列,求正整数n的值.
已知角A、B、C为△ABC的三个内角,其对边分别为a、b、c,若
,
,a=2
,且
·
=
.
(1)若△ABC的面积S=
,求b+c的值.
(2)求b+c的取值范围.
已知抛物线
的焦点为
,点
是抛物线上的一点,且其纵坐标为4,
.
(1)求抛物线的方程;
(2)设点
是抛物线上的两点,
的角平分线与
轴垂直,求
的面积最大时直线
的方程.
已知函数
.
(1)当
时,求
的单调区间;
(2)若不等式
有解,求实数m的取值菹围;
(3)证明:当a=0时,
.
如图,在三棱锥
中,直线
平面
,且
,又点
,
,
分别是线段
,
,
的中点,且点
是线段
上的动点.
(1)证明:直线
平面
;
(2)若
,求二面角
的平面角的余弦值.