游客
题文

某高校在2011年自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100]得到的频率分布直方图如图所示.
(1)分别求第3,4,5组的频率;
(2) 若该校决定在笔试成绩高的第3,4,5组中用分层抽样抽取6名学生进入第二轮面试,
(ⅰ) 已知学生甲和学生乙的成绩均在第三组,求学生甲和学生乙同时进入第二轮面试的概率;
(ⅱ) 学校决定在这6名学生中随机抽取2名学生接受考官D的面试,设第4组中有名学生被考官D面试,求的分布列和数学期望.

科目 数学   题型 解答题   难度 未知
登录免费查看答案和解析
相关试题

某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:

日期
1月10日
2月10日
3月10日
4月10日
5月10日
6月10日
昼夜温差x(°C)
10
11
13
12
8
6
就诊人数y(个)
22
25
29
26
16
12


该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.
(1)求选取的2组数据恰好是相邻两个月的概率;
(2)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y关于x的线性回归方程;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问(2)中所得线性回归方程序是否理想?

如图1,在直角梯形中,,,, 点中点.将沿折起, 使平面平面,得到几何体,如图2所示.

(1)在上找一点,使平面;
(2)求点到平面的距离.

已知函数
(1)当时,解不等式
(2)若时,,求的取值范围.

已知曲线的参数方程为为参数,),直线在参数方程是为参数),曲线与直线有一个公共点在轴上,以坐标原点为极点,轴的正半轴为极轴建立极坐标系。
(1)求曲线的普通方程;
(2)若点在曲线上,求的值。

如图,是直角三角形,.以为直径的圆于点,点边的中点.连结交圆于点

(Ⅰ)求证:四点共圆;
(Ⅱ )求证:

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号