如图,∠1=400,∠B=500,AB⊥AC(12 分)
① ∠DAB+∠B= 0
② AD与BC平行吗?AB与CD平行吗?试说明理由。
(11·漳州)(满分8分)下图是2002年在北京举办的世界数学家大会的会标“弦图”,它既标志着中国古代的数学成就,又像一只转动着的风车,欢迎世界各地的数学家们.
请将“弦图”中的四个直角三角形通过你所学过的图形变换,在以下方格纸中设计另个两个不同的图案.画图要求:(1)每个直角三角形的顶点均在方格纸的格点上,且四个三角形到不重叠;(2)所设计的图案(不含方格纸)必须是中心对称图形或轴对称图形.
(11·漳州)(满分8分)如图,∠B=∠D,请在不增加辅助线的情况下,添加一个适当的条件,使△ABC≌△ADE,并证明.
(1)添加的条件是_▲;
(2)证明:
(11·漳州)(满分9分)已知三个一元一次不等式:2x>4,2x≥x-1,x-3<0.请从中选择你喜欢的两个不等式,组成一个不等式组,求出这不等式组的解集,并将解集在数轴上表示出来.
(1)你组成的不等式组是;
(2)解:
(11·漳州)(满分14分)如图1,抛物线y=mx2-11mx+24m (m<0) 与x轴交于B、C两点(点B在点C的左侧),抛物线另有一点A在第一象限内,且∠BAC=90°.
(1)填空:OB=_▲,OC=_▲;
(2)连接OA,将△OAC沿x轴翻折后得△ODC,当四边形OACD是菱形时,求此时抛物线的解析式;(3)如图2,设垂直于x轴的直线l:x=n与(2)中所求的抛物线交于点M,与CD交于点N,若直线l沿x轴方向左右平移,且交点M始终位于抛物线上A、C两点之间时,试探究:当n为何值时,四边形AMCN的面积取得最大值,并求出这个最大值.
(11·漳州)(满分13分)如图,直线y=-2x+2与x轴、y轴分别交于A、B两点,将△OAB绕点O逆时针方向旋转90°后得到△OCD.
(1)填空:点C的坐标是(_▲,_▲),
点D的坐标是(_▲,_▲);
(2)设直线CD与AB交于点M,求线段BM的长;
(3)在y轴上是否存在点P,使得△BMP是等腰三角形?若存在,
请求出所有满足条件的点P的坐标;若不存在,请说明理由.