在四棱锥P-ABCD中,平面PAD⊥平面ABCD,PA=PD,底面ABCD是菱形,∠A=60°,E是AD的中点,F是PC的中点.
(Ⅰ)求证:BE⊥平面PAD;
(Ⅱ)求证:EF∥平面PAB;
已知圆及点
.
(1)若为圆
上任一点,求
的最大值和最小值;
(2)已知点,直线
与圆C交于点A、B.当
为何值时
取到最小值。
已知圆M过定点,圆心M在二次曲线
上运动
(1)若圆M与y轴相切,求圆M方程;
(2)已知圆M的圆心M在第一象限, 半径为,动点
是圆M外一点,过点
与 圆M相切的切线的长为3,求动点
的轨迹方程;
已知圆C与圆相交,所得公共弦平行于已知直线
,又圆C经过点A(-2,3),B(1,4),求圆C的方程。
(1)(如图)在底半径为,母线长为
的圆锥中内接一个高为
的圆柱,求圆柱的表面积
(2)如图,在四边形中,
,
,
,
,
,求四边形
绕
旋转一周所成几何体的表面积及体积.
已知△ABC中,A(4,2),B(1,8),C(-1,8).
(1)求AB边上的高所在的直线方程;
(2)直线//AB,与AC,BC依次交于E,F,
.求
所在的直线方程。