某公司春节联欢会预设一抽奖活动:在一个不透明的口袋中装入外形一样,号码分别为1,2,3,…,10的十个小球。活动者一次从中摸出三个小球,三球号码有且仅有两个连号的为三等奖,奖金30元;三球号码都连号为二等奖,奖金60元;三球号码分别为1,5,10为一等奖,奖金240元;其余情况无奖金.
(1)员工甲抽奖一次所得奖金的分布列与期望;
(2)员工乙幸运地先后获得四次抽奖机会,他得奖次数的方差是多少?
某学校课题组为了研究学生的数学成绩和物理成绩之间的关系,随机抽取
高二年级20名学生某次考试成绩,列出如下所示2×2列联表:
数学成绩 物理成绩 |
优秀 |
不优秀 |
合计 |
优秀 |
5 |
2 |
7 |
不优秀 |
1 |
12 |
13 |
合计 |
6 |
14 |
20 |
(1)根据题中表格的数据计算,你有多少的把握认为学生的数学成绩与物理成绩之间有关系?
(2)若按下面的方法从这20人(序号1,2,3,…,20)中抽取1人来了解有关情况:将一个标有数字1,2,3,4,5,6的正六面体骰子连续投掷两次,记朝上的两个数字的乘积为被抽取人的序号.试求:①抽到12号的概率;②抽到“无效序号(序号大于20)”的概率.
参考公式:,其中
)
临界值表供参考:
![]() |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
![]() |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
设函数
(I)讨论 的单调性;
(II)若 有两个极值点 和 ,记过点 , 的直线的斜率为 ,问:是否存在 ,使得 ?若存在,求出 的值,若不存在,请说明理由.
已知是首项为19,公差为-2的等差数列,
为
的前
项和.
(Ⅰ)求通项及
;
(Ⅱ)设是首项为1,公比为3的等比数列,求数列
的通项公式及其前
项和
.
编号为的16名篮球运动员在某次训练比赛中的得分记录如下:
运动员编号 |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
得分 |
15 |
35 |
21 |
28 |
25 |
36 |
18 |
34 |
运动员编号 |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
得分 |
17 |
26 |
25 |
33 |
22 |
12 |
31 |
38 |
(Ⅰ)将得分在对应区间内的人数填入相应的空格;
区间 |
![]() |
![]() |
![]() |
人数 |
(Ⅱ)从得分在区间内的运动员中随机抽取2人,
(i)用运动员的编号列出所有可能的抽取结果;
(ii)求这2人得分之和大于50的概率.