编号为的16名篮球运动员在某次训练比赛中的得分记录如下:
运动员编号 |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
得分 |
15 |
35 |
21 |
28 |
25 |
36 |
18 |
34 |
运动员编号 |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
得分 |
17 |
26 |
25 |
33 |
22 |
12 |
31 |
38 |
(Ⅰ)将得分在对应区间内的人数填入相应的空格;
区间 |
![]() |
![]() |
![]() |
人数 |
|
|
|
(Ⅱ)从得分在区间内的运动员中随机抽取2人,
(i)用运动员的编号列出所有可能的抽取结果;
(ii)求这2人得分之和大于50的概率.
(本小题10分)已知复数,若
,
(1)求;
(2)求实数的值 .
(本小题满分11分)(理科做)如图1,在直角梯形中,
,
,
,
.把
沿对角线
折起到
的位置,如图2所示,使得点
在平面
上的正投影
恰好落在线段
上,连接
,点
分别为线段
的中点.
(1)求证:平面平面
;
(2)求直线与平面
所成角的正弦值;
(3)在棱上是否存在一点
,使得
到点
四点的距离相等?请说明理由.
(文科做)设函数.
(1)求函数f(x)的单调区间和极值;
(2)若对任意的不等式| f′(x)|≤a恒成立,求a的取值范围.
(本小题11分)已知椭圆过点
,且长轴长等于4.
(1)求椭圆C的方程;
(2)是椭圆C的两个焦点,圆O是以
为直径的圆,直线
与圆O相切,并与椭圆C交于不同的两点A,B,若
,求
的值.
(本小题共11分)如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点,将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2
(1)求证:DE∥平面A1CB;
(2)求证:A1F⊥BE;
(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.
(本小题11分)设命题实数
满足
,其中
,命题
实数
满足
.
(Ⅰ)若,且
为真,求实数
的取值范围;
(Ⅱ)若是
的充分不必要条件,求实数
的取值范围.