某商品每件成本9元,售价为30元,每星期卖出432件,如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值(单位:元,
)的平方成正比,已知商品单价降低2元时,一星期多卖出24件.
(I)将一个星期的商品销售利润表示成的函数;
(II)如何定价才能使一个星期的商品销售利润最大?
某大型企业人力资源部为了研究企业员工工作积极性和对待企业改革的关系,随机抽取了100名员工进行调查,其中支持企业改革的调查者中,工作积极的46人,工作一般的35人,而不太赞成企业改革的调查者中,工作积极的4人,工作一般的15人.
(1)根据以上数据建立一个的列联表;
(2)对于人力资源部的研究项目,根据以上数据可以认为企业的全体员工对待企业改革的态度与其工作积极性是否有关系?
参考公式:(其中
)
![]() |
0.50 |
0.40 |
0.25 |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
![]() |
0.455 |
0.708 |
1.323 |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
已知复数满足
(i为虚数单位),求
。
已知函数.
(Ⅰ)求的最小值;
(Ⅱ)若对所有都有
,求实数
的取值范围.
如图所示,已知直四棱柱中,
,
,且满足
.
(Ⅰ)求证:平面
;
(Ⅱ)求二面角的余弦值.
已知点P(3,4)是椭圆+=1(a>b>0)上的一点,F1、F2是椭圆的两焦点,若PF1⊥PF2,试求:
(1)椭圆方程;
(2)△PF1F2的面积.