(本小题满分10分)选修4-1:几何证明选讲
已知ABC中,AB=AC, D是
ABC外接圆劣弧
AC弧上的点(不与点A,C重合),延长BD至E。
(1)求证:AD的延长线平分CDE;
(2)若BAC=30°,
ABC中BC边上的高为2+
,
求ABC外接圆的面积。
某地为迎接2014年索契冬奥会,举行了一场奥运选拔赛,其中甲、乙两名运动员为争取最后一个参赛名额进行的7轮比赛,其得分情况如茎叶图所示:
(1)若从甲运动员的不低于80且不高于90的得分中任选3个,求其中与平均得分之差的绝对值不超过2的概率;
(2)若分别从甲、乙两名运动员的每轮比赛不低于80且不高于90的得分中任选1个,求甲、乙两名运动员得分之差的绝对值的分布列与期望.
在如图的几何体中,四边形为正方形,四边形
为等腰梯形,
∥
,
,
,
.
(1)求证:平面
;
(2)求直线与平面
所成角的正弦值.
数列的前
项和为
,且
是
和
的等差中项,等差数列
满足
,
.
(1)求数列、
的通项公式;
(2)设,数列
的前
项和为
,证明:
.
已知实数,函数
。
(1)当时,讨论函数
的单调性;
(2)若在区间
上是增函数,求实数
的取值范围;
(3)若当时,函数
图象上的点均在不等式
,所表示的平面区域内,求实数
的取值范围。
已知(
)是曲线
上的点,
,
是数列
的前
项和,且满足
,
,
.
(1)证明:数列(
)是常数数列;
(2)确定的取值集合
,使
时,数列
是单调递增数列;
(3)证明:当时,弦
(
)的斜率随
单调递增