游客
题文

如图,是底部不可到达的一个塔型建筑物,为塔的最高点.现需在对岸测出塔高,甲、乙两同学各提出了一种测量方法,甲同学的方法是:选与塔底在同一水平面内的一条基线,使三点不在同一条直线上,测出的大小(分别用表示测得的数据)以及间的距离(用表示测得的数据),另外需在点测得塔顶的仰角(用表示测量的数据),就可以求得塔高.乙同学的方法是:选一条水平基线,使三点在同一条直线上.在处分别测得塔顶的仰角(分别用表示测得的数据)以及间的距离(用表示测得的数据),就可以求得塔高.请从甲或乙的想法中选出一种测量方法,写出你的选择并按如下要求完成测量计算:①画出测量示意图;②用所叙述的相应字母表示测量数据,画图时按顺时针方向标注,按从左到右的方向标注;③求塔高

科目 数学   题型 解答题   难度 容易
知识点: 解三角形
登录免费查看答案和解析
相关试题

如图,为空间四点.在中,.等
边三角形为轴运动.
(Ⅰ)当平面平面时,求
(Ⅱ)当转动时,是否总有?证明你的结论.

有时可用函数
述学习某学科知识的掌握程度.其中表示某学科知识的学习次数(),表示对该学科知识的掌握程度,正实数a与学科知识有关
(1)证明:当x 7时,掌握程度的增长量f(x+1)- f(x)总是下降;
(2)根据经验,学科甲、乙、丙对应的a的取值区间分别为(115,121],(121,127]
(127,133].当学习某学科知识6次时,掌握程度是85%,请确定相应的学科.

某商品每件成本9元,售价为30元,每星期卖出432件,如果降低价格,销售
量可以增加,且每星期多卖出的商品件数与商品单价的降低值(单位:元,
的平方成正比,已知商品单价降低2元时,一星期多卖出24件.
(I)将一个星期的商品销售利润表示成的函数;
(II)如何定价才能使一个星期的商品销售利润最大?

(本小题满分12分)
已知函数的图象为曲线, 函数的图象为直线.
(Ⅰ) 当时, 求的最大值;
(Ⅱ) 设直线与曲线的交点的横坐标分别为, 且,
求证: .

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号