如图,是底部
不可到达的一个塔型建筑物,
为塔的最高点.现需在对岸测出塔高
,甲、乙两同学各提出了一种测量方法,甲同学的方法是:选与塔底
在同一水平面内的一条基线
,使
三点不在同一条直线上,测出
及
的大小(分别用
表示测得的数据)以及
间的距离(用
表示测得的数据),另外需在点
测得塔顶
的仰角(用
表示测量的数据),就可以求得塔高
.乙同学的方法是:选一条水平基线
,使
三点在同一条直线上.在
处分别测得塔顶
的仰角(分别用
表示测得的数据)以及
间的距离(用
表示测得的数据),就可以求得塔高
.请从甲或乙的想法中选出一种测量方法,写出你的选择并按如下要求完成测量计算:①画出测量示意图;②用所叙述的相应字母表示测量数据,画图时
按顺时针方向标注,
按从左到右的方向标注;③求塔高
.
设函数.
(1)当,
时,求所有使
成立的
的值。
(2)若为奇函数,求证:
;
(3)设常数<
,且对任意x
,
<0恒成立,求实数
的取值范围.
行驶中的汽车,在刹车后由于惯性的作用,要继续向前滑行一段距离后才会停下,这段距离叫刹车距离。为测定某种型号汽车的刹车性能,对这种型号的汽车在国道公路上进行测试,测试所得数据如下表。根据表中的数据作散点图,模拟函数可以选用二次函数或函数(其中
为常数).某人用(0,0),(10,1.1),(30,6.9)求出相关系数,用(60,24.8)验证,请问用以上哪个函数作为模拟函数较好,并说明理由.在一次由这种型号的汽车发生的交通事故中,测得刹车距离为14.4m,问汽车在刹车时的速度大概是多少?
(其中用函数拟合,经运算得到函数式为
,且
)
刹车时车速v/km/h |
10 |
15 |
30 |
50 |
60 |
80 |
|||
刹车距离s/m |
1.1 |
2.1 |
6.9 |
17.5 |
24.8 |
42.5 |
|||
已知定义在上的函数
是偶函数,且
时,
.
(1)当时,求
解析式;
(2)当,求
取值的集合.
(3)当,函数的值域为
,求
满足的条件。
已知函数,
(1)求的值;
(2)当时,求
取值的集合.
已知函数,
(1)求f(x)的定义域;
(2)说明函数f(x)的增减性,并用定义证明。