行驶中的汽车,在刹车后由于惯性的作用,要继续向前滑行一段距离后才会停下,这段距离叫刹车距离。为测定某种型号汽车的刹车性能,对这种型号的汽车在国道公路上进行测试,测试所得数据如下表。根据表中的数据作散点图,模拟函数可以选用二次函数或函数(其中
为常数).某人用(0,0),(10,1.1),(30,6.9)求出相关系数,用(60,24.8)验证,请问用以上哪个函数作为模拟函数较好,并说明理由.在一次由这种型号的汽车发生的交通事故中,测得刹车距离为14.4m,问汽车在刹车时的速度大概是多少?
(其中用函数拟合,经运算得到函数式为
,且
)
刹车时车速v/km/h |
10 |
15 |
30 |
50 |
60 |
80 |
|||
刹车距离s/m |
1.1 |
2.1 |
6.9 |
17.5 |
24.8 |
42.5 |
|
||
(理)(本题8分)甲、乙、丙三人进行某项比赛,每局有两人参加,没有平局,在一局比赛中,甲胜乙的概率为,甲胜丙的概率为
,乙胜丙的概率为
,比赛的规则是先由甲和乙进行第一局的比赛,然后每局的获胜者与未参加此局比赛的人进行下一局的比赛,在比赛中,有人获胜两局就算取得比赛的胜利,比赛结束.
(1)求只进行两局比赛,甲就取得胜利的概率;
(2)求只进行两局比赛,比赛就结束的概率;
(3)求甲取得比赛胜利的概率.
20、(文)(本小题8分)甲、乙两人做定点投篮,投篮者若投中则继续投篮,否则由对方投篮,第一次甲投篮,已知甲、乙每次投篮命中的概率分别为、
,且甲、乙投篮是否命中互不影响.
(1)求第三次由乙投篮的概率;
(2)求前4次投篮中各投两次的概率.
(本小题8分)如图,正三棱柱的底面边长为
,侧棱
,
是
延长线上一点,且
(1)求证:直线平面
;
(2)求二面角的大小.
(本小题8分)
已知展开
式中各项的系数和比各项的二项式系数和大
(1)求展开式中二项式系数最大的项;
(2)求展开式中系数最大的项.
(文)(本小题8分)
如图,在四棱锥中,
平面
,
,
,
,
(1)求证:;
(2)求点到平面
的距离
证明:(1)平面
,
又
平面
(2)设点到平面
的距离为
,
,
,
求得即点
到平面
的距离为
(其它方法可参照上述评分标准给分)
(理)(本小题8分)如图,在四棱锥中,底面
是矩形,
平面
,
,
,以
的中点
为球心
、
为直径的球面交
于点
.
(1) 求证:平面平面
;
(2)求点到平面
的距离.
证明:(1)由题意,在以
为直径
的球面上,则
平面
,则
又,
平面
,
∴,
平面
,
∴平面平面
.
(2)∵是
的中点,则
点到平面
的距离等于点
到平面
的距离的一半,由(1)知,
平面
于
,则线段
的长就是点
到平面
的距离
∵在中,
∴为
的中点,
则点到平面
的距离为
(其它方法可参照上述评分标准给分)