已知函数f (x)=lnx,g(x)=ex.(I)若函数φ (x) =" f" (x)-,求函数φ (x)的单调区间;(Ⅱ)设直线l为函数 y=f (x) 的图象上一点A(x0,f (x0))处的切线.证明:在区间(1,+∞)上存在唯一的x0,使得直线l与曲线y=g(x)相切.注:e为自然对数的底数.
已知向量 (I)求的值; (II)若的值.
解关于的不等式.
如图,四棱锥 S-ABCD的底面是正方形,每条侧棱的长都是地面边长的 倍, P为侧棱SD上的点。 (Ⅰ)求证: AC⊥ SD; (Ⅱ)若 SD⊥ 平面 PAC,求二面角 P-AC-D的大小 (Ⅲ)在(Ⅱ)的条件下,侧棱SC上是否存在一点E,使得BE∥平 面PAC。若存在,求SE:EC的值 ;若不存在,试说明理由。
求同时满足下列条件的所有的复数z, ①z+ ∈R, 且1<z+ ≤6;②z的实部和虚部都是整数.
已知的展开式中前三项的系数成等差数列. (Ⅰ)求n的值;(Ⅱ)求展开式中系数最大的项.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号