已知数列及
,
,
.
(Ⅰ)求的值,并求数列
的通项公式;
(Ⅱ)设,求数列
的前
项和
;
(Ⅲ)若对一切正整数
恒成立,求实数
的取值范围.
某房地产开发商投资810万元建一座写字楼,第一年装修费为10万元,以后每年增加20万元,把写字楼出租,每年收入租金300万元.
(Ⅰ)若扣除投资和各种装修费,则从第几年开始获取纯利润?
(Ⅱ)若干年后开发商为了投资其他项目,有两种处理方案:
①纯利润总和最大时,以100万元出售该楼;
②年平均利润最大时以460万元出售该楼,问哪种方案盈利更多?
已知函数,
(Ⅰ)求函数的最小正周期及单调递增区间;
(Ⅱ)在中,三内角
,
,
的对边分别为
,已知函数
的图象经过点
,
成等差数列,且
,求
的值.
如图,函数y=2sin(x+φ) x∈R , 其中0≤φ≤
的图象与y轴交于点(0,1).
(Ⅰ)求φ的值;
(Ⅱ)设P是图象上的最高点,M、N是图象与x轴的交点,求
已知a,b,c分别为△ABC内角A,B,C的对边,sin2B=2sinAsinC
(Ⅰ)若a=b,求cosB;
(Ⅱ)设B=90°,且a=,求△ABC的面积.