(本小题满分12分)
已知集合
(1)求
(2)若,求a的取值范围.
已知函数f(x)=,x∈(1,+∞).
(1)求函数f(x)的单调区间;
(2)函数f(x)在区间[2,+∞)上是否存在最小值,若存在,求出最小值,若不存在,请说明理由.
已知函数f(x)=axln x图象上点(e,f(e))处的切线与直线y=2x平行,g(x)=x2-tx-2.
(1)求函数f(x)的解析式;
(2)求函数f(x)在[n,n+2](n>0)上的最小值;
(3)对一切x∈(0,e],3f(x)≥g(x)恒成立,求实数t的取值范围.
已知函数f(x)=ax+ln x,g(x)=ex.
(1)当a≤0时,求f(x)的单调区间;
(2)若不等式g(x)< 有解,求实数m的取值范围.
已知函数f(x)=-aln x++x(a≠0),
(1)若曲线y=f(x)在点(1,f(1))处的切线与直线x-2y=0垂直,求实数a的值;
(2)讨论函数f(x)的单调性.
已知椭圆C:=1(a>b>0)的离心率与等轴双曲线的离心率互为倒数关系,直线l:x-y+
=0与以原点为圆心, 以椭圆C的短半轴长为半径的圆相切.
(1)求椭圆C的方程;
(2)设M是椭圆的上顶点,过点M分别作直线MA,MB交椭圆于A,B两点,设两直线的斜率分别为k1,k2,且k1+k2=4,证明:直线AB过定点.