.(本小题满分12分)
设函数f(x)=lnx-p(x-1),p∈R.
(Ⅰ)当p=1时,求函数f(x)的单调区间;
(Ⅱ)设函数g(x)=xf(x)+p(2x2―x―1),(x≥1),求证:当p≤-时,有g(x)≤0成立.
(本小题满分12分)
如图,是底部
不可到达的一个塔型建筑物,
为塔的最高点.现需在对岸测出塔高
,甲、乙两同学各提出了一种测量方法,甲同学的方法是:选与塔底
在同一水平面内的一条基线
,使
三点不在同一条直线上,测出
及
的大小(分别用
表示测得的数据)以及
间的距离(用
表示测得的数据),另外需在点
测得塔顶
的仰角(用
表示测量的数据),就可以求得塔高
.乙同学的方法是:选一条水平基线
,使
三点在同一条直线上.在
处分别测得塔顶
的仰角(分别用
表示测得的数据)以及
间的距离(用
表示测得的数据),就可以求得塔高
.
请从甲或乙的想法中选出一种测量方法,写出你的选择并按如下要求完成测量计算:①画出测量示意图;②用所叙述的相应字母表示测量数据,画图时按顺时针方向标注,
按从左到右的方向标注;③求塔高
.
(本小题满分10分)选修4—5:不等式选讲
已知关于x的不等式(其中
).
(1)当a=4时,求不等式的解集;
(2)若不等式有解,求实数a的取值范围
(本小题满分10分)选修4—4:坐标系与参数方程
在极坐标系中,曲线,过点A(5,α)(α为锐角且
)作平行于
的直线
,且
与曲线L分别交于B,C两点.
(1)以极点为原点,极轴为x轴的正半轴,取与极坐标相同单位长度,建立平面直角坐标系,写出曲线L和直线的普通方程;
(2)求|BC|的长
(本小题满分10分)选修41:几何证明选讲
如图,相交于A、B两点,AB是
的直径,过A点作
的切线交
于点E,并与BO1的延长线交于点P,PB分别与
、
交于C,D两点.
求证:(1)PA·PD=PE·PC;
(2)AD=AE
(本小题满分12分)
设二次函数,函数
,且有
,
(1)求函数的解析式;
(2)是否存在实数k和p,使得成立,若存在,求出k和p的值;若不存在,说明理由.