2011年国家对“酒后驾车”加大了处罚力度,出台了不准酒后驾车的禁令,某记者在一停车场对开车的司机进行了相关的调查,本次调查结果共有四种情况:①有时会喝点酒开车;②已戒酒或从不喝酒;③酒后不开车或请专业司机代驾;④平时喝酒,但开车当天不喝酒。将这次调查情况整理并绘制成如下尚不完整的统计图,请根据相关信息,解答下列问题。
(1)该记者本次一共调查
了 名司机。
(2)求图①中④所在扇形的圆心角,并补全图②。
(3)在本次调查中,记者随机采访其中一名司机,求他属于第②种情况的概率。
(4)请估计在开车的10万名司机中,不违反“酒驾”禁令的人数。
如图,在6×8的网格图中,每个小正方形边长均为1,点O和△ABC的顶点均为小正方形的顶点.
⑴以O为位似中心,在网格图中作△A′B′C′,使△A′B′C′和△ABC位似,且位似比为1:2
⑵连接⑴中的AA′,求四边形AA′C′C的周长.
(结果保留根号)
先化简,然后从
,1,-1中选取一个你认为合适的数作为x的值代入求值.
(1)计算:(2)解不等式组
2011年3月10日12时58分,在云南盈江县发生5.8级地震,随后又相继发生里氏4.7级、里氏4.5级、里氏3.6级余震。灾情发生后,全国人民抗震救灾,众志成城。湖州市政府也筹集了抗震救灾物资共120吨准备运往灾区,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)
车型 |
甲 |
乙 |
丙 |
汽车运载量(吨/辆) |
5 |
8 |
10 |
汽车运费(元/辆) |
400 |
500 |
600 |
(1)若全部物资都用甲、乙两种车型来运送,需运费8200元,问分别需甲、乙两种车型各几辆?
(2)为了节省运费,市政府打算用甲、乙、丙三种车型同时参与运送,已知它们的总车辆数为14辆,你能分别求出三种车型的车辆数吗?此时的运费又是多少元?
如图a,△ABC和△CEF是两个大小不等的等边三角形(等边三角形为三条边相等,三个角为60°的三角形),且有一个公共顶点C,点F、B、C在同一直线上,连结AF和BE。
(1)线段AF和BE有怎样的大小关系?(写出结论,不需要说明理由)
(2)将图a中的△CEF绕点C旋转一定的角度,得到图b,(1)中的结论还成立吗?作出判断并说明理由;