游客
题文

(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有多少个?
(2)某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?
(3)将4个相同的白球、5个相同的黑球、6个相同的红球放入4各不同的盒子中的3个中,使得有一个空盒且其他盒子中球的颜色齐全的不同放法有多少种?

科目 数学   题型 解答题   难度 容易
登录免费查看答案和解析
相关试题

(本小题满分12分) 已知圆过两点,且圆心上.
(1)求圆的方程;
(2)设是直线上的动点,是圆的两条切线,为切点,求四边形面积的最小值.

(本小题满分12分)已知两点,直线,在直线上求一点.
(1)使最小;(2)使最大.

(本小题满10分)设直线的方程为
(1) 若在两坐标轴上的截距相等,求的方程;
(2) 若不经过第二象限,求实数的取值范围.

如图:正方体ABCD-A1B1C1D1,过线段BD1上一点P(P平面ACB1)作垂直于D1B的平面分别交过D1的三条棱于E、F、G.

(1)求证:平面EFG∥平面A CB1,并判断三角形类型;
(2)若正方体棱长为a,求△EFG的最大面积,并求此时EF与B1C的距离.

已知正方体ABCD-A1B1C1D1的棱长为2,点E为棱AB的中点,求:
(Ⅰ)D1E与平面BC1D所成角的大小;
(Ⅱ)二面角D-BC1-C的大小;
(Ⅲ)异面直线B1D1与BC1之间的距离.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号