由下面四个图形中的点数分别给出了四个数列的前四项,将每个图形的层数增加可得到这四个数列的后继项.按图中多边形的边数依次称这些数列为“三角形数列”、“四边形数列”,将构图边数增加到
可得到“
边形数列”,记它的第
项为
,
1,3,6,10 1,4,9,16 1,5,12,22 1,6,15,28
(1) 求使得的最小
的取值;
(2) 试推导关于
、
的解析式;
( 3) 是否存在这样的“边形数列”,它的任意连续两项的和均为完全平方数,若存在,指出所有满足条件的数列并证明你的结论;若不存在,请说明理由.
(本小题满分12分)
一圆与轴相切,圆心在直线
上,在
上截得的弦长为
,
求圆的方程。
已知函数
(Ⅰ)求的值;
(Ⅱ)求的最大值和最小值.
(14分)设是椭圆
的两点,
,
,且
,椭圆离心率
,短轴长为2,O为坐标原点。
(1) 求椭圆方程;
(2) 若存在斜率为的直线AB过椭圆的焦点
(
为半焦距),求
的值;
(3) 试问的面积是否为定值?若是,求出该定值;若不是,
说明理由。
(13分)已知数列{}的前n项和Sn=-
-
+2(n为正整数).
(1)令=
,求证数列{
}是等差数列,并求数列{
}的通项公式;
(2)令=
,若Tn=c1+c2+…+cn, 求Tn。
(12分) 设,
.
(1)求在
上的值域;
(2)若对于任意,总存在
,使得
成立,求
的取值范围.