已知:正方形中,
,
绕点
顺时针旋转,它的两边分别交
(或它们的延长线)于点
.当
绕点
旋转到
时(如图1),易证
.
(1)当绕点
旋转到
时(如图2),线段
和
之间有怎样的数量关系?写出猜想,并加以证明.
(2)当绕点
旋转到如图3的位置时,线段
和
之间又有怎样的数量关系?请直接写出你的猜想.
在y=ax2+bx+c中,当时,y=
;
时,y=
;
时,y=
,求
的值.
如图,AB∥CD,BE平分∠ABC,∠DCB=140°,求∠ABD和∠EDC的度数.
已知求
的算术平方根.
(1)解方程:
(2)解方程组:
如图(1),抛物线(
)与x轴交于A、B两点,与y轴交于点C,直线AC的解析式为
,抛物线的对称轴与
轴交于点E,点D(-2,-3)在对称轴上.
(1)求此抛物线的解析式;
(2)如图(1),若点M是线段OE上一点(点M不与点O、E重合),过点M作MN⊥x轴,交抛物线于点N,记点N关于抛物线对称轴的对称点为点F,点P是线段MN上一点,且满足MN=4MP,连接FN、FP,作QP⊥PF交x轴于点Q,且满足PF=PQ,求点Q的坐标;
(3)如图(2),过点B作BK⊥x轴交直线AC于点K,连接DK、AD,点H是DK的中点,点G是线段AK上任意一点,将△DGH沿GH边翻折得△DGH,求当KG为何值时,△DGH与△KGH重叠部分的面积是△DGK面积的.