(本小题满分12分)
如图,在某点B处测得建筑物AE的顶端A的仰角为,沿BE方向前进30m,至点C处测得顶端A的仰角为2
,再继续前进10
m至D点,测得顶端A的仰角为4
,求建筑物AE的高度。
在直角坐标平面内,以坐标原点为极点,
轴的非负半轴为极轴建立极坐标系. 已知点
、
的极坐标分别为
、
,曲线
的参数方程为
为参数).
(Ⅰ)求直线的直角坐标方程;
(Ⅱ)若直线和曲线C只有一个交点,求
的值.
设矩阵M是把坐标平面上的点的纵坐标伸长到原来的2倍,横坐标保持不变的伸缩变换.
(Ⅰ)求矩阵M;
(Ⅱ)求矩阵M的特征值以及属于每个特征值的一个特征向量.
如图,在平面直角坐标系中,锐角、
的终边分别与单位圆交于
,
两点.
(Ⅰ)如果,
点的横坐标为
,求
的值;
(Ⅱ)若角的终边与单位圆交于C点,设角
、
、
的正弦线分别为MA、NB、PC,求证:线段MA、NB、PC能构成一个三角形;
(III)探究第(Ⅱ)小题中的三角形的外接圆面积是否为定值?若是,求出该定值;若不是,请说明理由.
已知函数.
(Ⅰ)当时,求函数
的图象在
处的切线方程;
(Ⅱ)判断函数的单调性;
(Ⅲ)求证:(
).
如图,圆与
轴相切于点
,与
轴正半轴相交于两点
(点
在点
的左侧),且
.
(Ⅰ)求圆的方程;
(Ⅱ)过点任作一条直线与椭圆
相交于两点
,连接
,求证:
.