计算:
某中学的高二(1)班有男同学45名,女同学15名,老师按照分层抽样的方法组建了一个4人的课外兴趣小组。求某同学被抽到的概率及课外兴趣小组中男、女同学的人数。
经过一个月的学习、讨论,这个兴趣小组决定选出两名同学做某项实验,方法是先从小组里选出一名同学做实验,该同学做完后再从小组内剩下的同学中选一名同学做实验,求选出的两名同学中恰有一名女同学的概率。
实验结束后,第一次做实验的同学得到的实验数据为68,70,71,72,74.第二次做实验的同学得到的实验数据为69,70,70,72,74.请问哪位同学的实验更稳定?并说明理由。
某学校篮球队、羽毛球队、乒乓球队的某些队员不止参加了一支球队,具体情况如图所示,现从中随机抽取一名队员,求:
(1)该队员只属于一支球队的概率;
(2)该队员最多属于两支球队的概率.
袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率为,得到黑球或黄球的概率是
,得到黄球或绿球的概率是
,试求得到黑球、黄球、绿球的概率各是多少?
已知圆的参数方程为
(
为参数),以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,圆
的极坐标方程为
.
(I)将圆的参数方程化为普通方程,将圆
的极坐标方程化为直角坐标方程;
(II)圆、
是否相交,若相交,请求出公共弦的长;若不相交,请说明理由.
分别求适合下列条件圆锥曲线的标准方程:
(1)焦点 为、
且过点
椭圆;
(2)与双曲线有相同的渐近线,且过点
的双曲线.