如图是一个路障的纵截面和汽车越过路障时的底盘示意图,O1、O2分别是车轮的轴心,M是线段O1O2的中点(轴心距的中点),两车轮的半径相等.经验告诉人们,只要中点M不被P点托住(俗称托底盘,对汽车很有危害!),线段O1O2上的其它点就不会被P点托住,汽车就可顺利通过.否则,就要通过其他方式通过.(1)若某种汽车的车轮半径为50cm, 轴心距O1O2为400cm. 通过计算说明,当∠APB等于多少度时,汽车恰好能通过斜坡?(精确到0.1,参考数据sin14.48º≈0.25,cos14.48º
≈0.97)(2)当∠APB=120°时,通过计算说明要使汽车安全通过,车轮半径与轴心距O1O2的比应符合什么条件?.
已知二次函数h=x2﹣(2m﹣1)x+m2﹣m(m是常数,且m≠0)
(1)证明:不论m取何值时,该二次函数图象总与x轴有两个交点;
(2)若A(n﹣3,n2+2)、B(﹣n+1,n2+2)是该二次函数图象上的两个不同点,求二次函数解析式和m的值;
(3)设二次函数h=x2﹣(2m﹣1)x+m2﹣m与x轴两个交点的横坐标分别为x1,x2(其中x1>x2),若y是关于m的函数,且y=2﹣,请结合函数的图象回答:当y<m时,求m的取值范围.
如图,在△ABC中,AB=AC=4,sinC=
,
(1)求BC的长;
(2)作以AC为直径的⊙O,使⊙O交线段AB于点D,交线段BC于点E,并求点D到BC的距离(要求:尺规作图,保留作图痕迹,不写画法)
已知:如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交与BE的延长线于点F,且AF=DC,连接CF.
(1)求证:D是BC的中点;
(2)当AB与AC有何数量关系时,四边形ADCF为矩形,请说明理由.
如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,点A,B,C的坐标分别为(0,﹣1),(1,﹣1),(5,﹣1)
(1)判断△ABC的形状;
(2)将△ABC绕点C顺时针旋转90°得到△A1B1C,请在网格中画出△A1B1C,并直接写出点A1和B1的坐标;
(3)将△ABC绕线段AC所在直线旋转一周,求所得几何体的表面积.
小明在数学课外小组活动中遇到这样一个“新定义”问题:
定义运算“※”为:a※b=,求1※(﹣4)的值.
小明是这样解决问题的:由新定义可知a=1,b=﹣4,又b<0,所以1※(﹣4)=,
请你参考小明的解题思路,回答下列问题:
(1)计算:3※7;
(2)若15※m=,求m的值;
(3)函数y=4※x(x≠0)的图象大致是 .
A.![]() |
B.![]() |
C.![]() |
D.![]() |