游客
题文

(本小题满分10分)
如图(1),在平面直角坐标系中,△OAB三个顶点坐标分别为O(0,0),A(1,),B(4,0).

(1)求证:AB⊥OA
(2)在第一象限内确定点M,使△MOB与△AOB相似,求符合条件的点M的坐标.
(3)如图(2),已知D(0,-3),作直线BD.
①将△AOB沿射线BD平移4个单位长度后,求△AOB与以D为圆心,以1为半径的⊙D的公共点的个数.
②如图(3),现有一点P从D点出发,沿射线DB的方向以1个单位长度/秒的速度作匀速运动,运动时间为秒.当以P为圆心,以为半径的⊙P与△AOB有公共点时,求的取值范围.

科目 数学   题型 解答题   难度 未知
登录免费查看答案和解析
相关试题

如图,我县某校新建了一座陶铸雕塑,小林站在距离雕塑2.7米的A处自B点看雕塑头顶D的仰角为45°,看雕塑底部C的仰角为30°,求塑像CD的高度.(最后结果精确到0.1米,参考数据:

先化简,再求值:(a2b+ab)÷,其中a=,b=

(1)计算:24+|1﹣4sin60°|+(π﹣0
(2)解方程:

如图,在平面直角坐标系中,直线AB与x轴、y轴分别交于点A、B,直线CD与x轴、y轴分别交于点C、D,AB与CD相交于点E,线段OA、OC的长是一元二次方程-18x+72=0的两根(OA>OC),BE=5,tan∠ABO=

(1)求点A,C的坐标;
(2)若反比例函数y=的图象经过点E,求k的值;
(3)若点P在坐标轴上,在平面内是否存在一点Q,使以点C,E,P,Q为顶点的四边形是矩形?若存在,请写出满足条件的点Q的个数,并直接写出位于x轴下方的点Q的坐标;若不存在,请说明理由.

某工厂计划生产A、B两种产品共60件,需购买甲、乙两种材料.生产一件A产品需甲种材料4千克,乙种材料1千克;生产一件B产品需甲、乙两种材料各3千克.经测算,购买甲、乙两种材料各1千克共需资金60元;购买甲种材料2千克和乙种材料3千克共需资金155元.
(1)甲、乙两种材料每千克分别是多少元?
(2)现工厂用于购买甲、乙两种材料的资金不能超过10000元,且生产B产品要超过38件,问有哪几种符合条件的生产方案?
(3)在(2)的条件下,若生产一件A产品需加工费40元,若生产一件B产品需加工费50元,应选择哪种生产方案,才能使生产这批产品的成本最低?请直接写出方案。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号