某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;
(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?
解方程
(1)x(x+2)=5x+10
(2)3x2-6x+1=0
(本题12分)如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标(3,3),将正方形ABCO绕点A顺时针旋转角度α(0°<α<90°),得到正方形ADEF,ED交线段OC于点G,ED的延长线交线段BC于点P,连AP、AG.
(1)求证:△AOG≌△ADG;
(2)求∠PAG的度数,并判断线段OG、PG、BP之间的数量关系,并说明理由;
(3)当∠1=∠2时,求直线PE的解析式.
(本题10分)已知,点I是△ABC的内心(三角形三个内角平分线的交点),过点B作BP⊥BI交AI的延长线于点P.
(1)如图1,若BA=BC,
①求证:BP∥AC;
②设∠BAC=α(其中α为常数),求∠BCP;
(2)如图2,CM、BN为△ABC的角平分线,若BM+CN=6,∠BAC=60°,请你直接写出点P到直线BC的距离的最大值等于___________.
(本题10分)如图,利用一面长为34米的墙,用铁栅栏围成一个矩形自行车场地ABCD,在AB和BC边各有一个2米宽的小门(不用铁栅栏).设矩形ABCD的边AD长为x米,AB长为y米,矩形的面积为S平方米,且x<y.
(1)若所用铁栅栏的长为40米,求y与x的函数关系式,并直接写出自变量x的取值范围;
(2)在(1)的条件下,求S与x的函数关系式,并求出怎样围才能使矩形场地的面积为192平方米?
(本题8分)如图,已知矩形ABCD,点E为BC的中点,将△ABE沿直线AE折叠,点B落在B′点处,连接B′C.
(1)求证:AE∥B′C;
(2)若AB=4,BC=6,求线段B′C的长.