已知椭圆的离心率为,其左、右焦点分别为,点是椭圆上一点,且,(为坐标原点).(Ⅰ)求椭圆的方程;(Ⅱ)过点且斜率为的动直线交椭圆于两点,在轴上是否存在定点,使以为直径的圆恒过这个点?若存在,求出的坐标,若不存在,说明理由.
如图所示,平面平面,且四边形为矩形,四边形为直角梯形,,,,. (1)求证:平面; (2)求平面与平面所成锐二面角的余弦值; (3)求直线与平面所成角的余弦值.
如图所示,几何体中,为正三角形,⊥, ,. (Ⅰ)在线段上找一点,使平面,并证明; (Ⅱ)求证:面面.
如图,四棱锥的底面是边长为2的菱形,.已知. (Ⅰ)证明:; (Ⅱ)求三棱锥的体积.
(1)已知两直线,当⊥时,求的值; (2)求经过的交点且平行于直线的直线.
已知函数是偶函数. (1)求k的值; (2)若函数的图象与直线没有交点,求b的取值范围; (3)设,若函数与的图象有且只有一个公共点,求的取值范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号