六名学生需依次进行身体体能和外语两个项目的训练及考核。每个项目只有一次补考机会,补考不合格者不能进入下一个项目的训练(即淘汰),若每个学生身体体能考核合格的概率是,外语考核合格的概率是
,假设每一次考试是否合格互不影响。
①求某个学生不被淘汰的概率。
②求6名学生至多有两名被淘汰的概率
③假设某学生不放弃每一次考核的机会,用表示其参加补考的次数,求随机变量
的分布列和数学期望。
在长方体中,
,用过
,
,
三点的平面截去长方体的一个角后,留下如图的几何体,且这几何体的体积为120.
(1)求棱的长;
(2)求点到平面
的距离.
设函数
(1)当时,求
的极值;
(2)当时,求
的单调区间;
(3)当时,对任意的正整数
,在区间
上总有
个数使得
成立,试求正整数
的最大值。
(本小题满分12分)
某分公司经销某种品牌产品,每件产品的成本为3元,并且每件产品需向总公司交元(
)的管理费,预计当每件产品的售价为
元(
)时,一年的销售量为
万件.
(1)求分公司一年的利润L(万元)与每件产品的售价(元)的函数关系式;
(2)当每件产品的售价为多少元时,分公司一年的利润L最大?并求出L的最大值
(本小题满分12分)
已知向量,其中
,且
,又函数
的图象任意两相邻对称轴间的距离为
(1)求的值;
(2)设是第一象限角,且
,求
的值.
(本小题满分12分)
已知等差数列的前
项和为
,且
(1)求通项公式;
(2)求数列的前
项和