已知椭圆的方程为它的一个焦点与抛物线的焦点重合,离心率过椭圆的右焦点F作与坐标轴不垂直的直线交椭圆于A、B两点.(Ⅰ)求椭圆的标准方程;(Ⅱ)设点求直线的方程
已知圆的圆心在直线上,圆与直线相切, 并且圆截直线所得弦长为,求圆的方程.
已知两点,,求以为直径的圆的方程,并判断、、与圆的位置关系.
已知圆C:,直线: (1)求证:直线过定点; (2)判断该定点与圆的位置关系; (3)当为何值时,直线被圆C截得的弦最长。
过点作直线,当斜率为何值时,直线与圆有公共点.
求经过点并且和两个坐标轴围成的三角形的面积是的直线方程.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号