游客
题文

甲、乙两同学进行下棋比赛,约定每局胜者得1分,负者得0分(无平局),比赛进行到有一个人比对方多2分或比满8局时停止,设甲在每局中获胜的概率为,且各局胜负相互独立.已知第二局比赛结束时比赛停止的概率为
(I)如右图为统计这次比赛的局数n和甲、乙的总得分S,T的程序框图.其中如果甲获胜,输人a=l.b=0;如果乙获胜,则输人a=0,b=1.请问在①②两个判断框中应分别填写什么条件?
(Ⅱ)求p的值;
(Ⅲ)设表示比赛停止时已比赛的局数,求随机变量的分布列和

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

已知ABC三个箱子中各装有两个完全相同的球,每个箱子里的球,有一个球标着号码1,另一个球标着号码2.现从ABC三个箱子中各摸出一个球.
(1)若用数组(xyz)中的xyz分别表示从ABC三个箱子中摸出的球的号码,请写出数组(xyz)的所有情形,并回答一共有多少种;
(2)如果请您猜测摸出的这三个球的号码之和,猜中有奖.那么猜什么数获奖的可能性最大?请说明理由.

已知双曲线=1(a>0,b>0)的右焦点为F(c,0).
(1)若双曲线的一条渐近线方程为yxc=2,求双曲线的方程;
(2)以原点O为圆心,c为半径作圆,该圆与双曲线在第一象限的交点为A,过A作圆的切线,斜率为-,求双曲线的离心率.

已知椭圆C的中心在原点,一个焦点为F(0,),且长轴长与短轴长的比是∶1.

(1)求椭圆C的方程;
(2)若椭圆C上在第一象限的一点P的横坐标为1,过点P作倾斜角互补的两条不同的直线PAPB分别交椭圆C于另外两点AB,求证:直线AB的斜率为定值.

已知抛物线Cy2=2px(p>0)的焦点为F,抛物线C与直线l1y=-x的一个交点的横坐标为8.
(1)求抛物线C的方程;
(2)不过原点的直线l2l1垂直,且与抛物线交于不同的两点AB,若线段AB的中点为P,且|OP|=|PB|,求△FAB的面积.

已知圆C经过点A(-2,0),B(0,2),且圆心C在直线yx上,又直线lykx+1与圆C相交于PQ两点.
(1)求圆C的方程;
(2)若·=-2,求实数k的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号