甲、乙两同学进行下棋比赛,约定每局胜者得1分,负者得0分(无平局),比赛进行到有一个人比对方多2分或比满8局时停止,设甲在每局中获胜的概率为,且各局胜负相互独立.已知第二局比赛结束时比赛停止的概率为.(I)如右图为统计这次比赛的局数n和甲、乙的总得分S,T的程序框图.其中如果甲获胜,输人a=l.b=0;如果乙获胜,则输人a=0,b=1.请问在①②两个判断框中应分别填写什么条件?(Ⅱ)求p的值;(Ⅲ)设表示比赛停止时已比赛的局数,求随机变量的分布列和
用数学归纳法证明等式时,写出到时左边应增加的项为?
数列的前项和满足,求
数列中,,,求
求数列的前项和
设函数f(x)=x3-ax(a>0),g(x)=bx2+2b﹣1. (1)若曲线y=f(x)与y=g(x)在它们的交点(1,c)处有相同的切线,求实数a,b的值; (2)当b=时,若函数h(x)=f(x)+g(x)在区间(﹣2,0)内恰有两个零点,求实数a的取值范围; (3)当a=1,b=0时,求函数h(x)=f(x)+g(x)在区间[t,t+3]上的最小值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号