已知抛物线C:y2=2px(p>0)的焦点为F,抛物线C与直线l1:y=-x的一个交点的横坐标为8.
(1)求抛物线C的方程;
(2)不过原点的直线l2与l1垂直,且与抛物线交于不同的两点A、B,若线段AB的中点为P,且|OP|=|PB|,求△FAB的面积.
((本小题满分12分)
如图,斜三棱柱-ABC的底面是边长为2的正三角形,顶点
在底面上的射影是△ABC的中心,
与AB的夹角是45°
(1)求证:
⊥平面
;
(2)求此棱柱的侧面积 。
( (本小题满分12分)
在棱长为4的正方体ABCD-A1B1C1D1中,O是正方形A1B1C1D1的中心,点P在棱CC1上,且CC1=4CP.
(1)、求直线AP与平面BCC1B1所成的角的大小(结果用反三角函数值表示);
(2)、求点P到平面ABD1的距离.
(本小题满分12分)
如图,在三棱锥P-ABC中,PA=PC,∠APC=∠ACB=90°,∠BAC=30°,平面PAC⊥平面ABC.
(1)求证:平面PAB⊥平面PBC;
(2)若PA=2,求三棱锥P-ABC的体积.
(本小题满分10分)
7名学生站成一排,下列情况各有多少种不同的排法?
(1)甲、乙必须排在一起;
(2)甲不在排头,乙不在排尾;
(3)甲、乙互不相邻;
(4)甲、乙之间须隔一人
(本题满分12分)
已知函数f(x)=A(A>0,
>0,0<
<
函数,且y=f
(x)的最大值为2,其图象相邻两对称轴间的距离为2,并过点(1,2).
(1)求;
(2)计算f(1)+f(2)+… +f(2 008).