各项为正数的数列的前n项和为
,且满足:
(1)求;
(2)设函数求数列
已知平面内一动点到点
的距离等于它到直线
的距离.
(Ⅰ)求动点的轨迹
的方程;
(Ⅱ)若直线与曲线
交于
两点,且
,又点
,求
的最小值.
如图,正三角形的边长为
,D,E,F分别在三边AB,BC和CA上,且D为AB的中点,
,
,
.
(1)当时,求
的大小;
(2)求的面积S的最小值及使S得取最小值时的
值.
如图,在三棱柱 中,已知
,
,
与平面
所成角为
,
平面
.
(Ⅰ)求证:; (Ⅱ)求三棱锥
的高.
(本小题满分10分)如图,直线为圆的切线,切点为
,点
在圆上,
的角平分线
交圆于点
,
垂直
交圆于点
.
(1)证明:;
(2)设圆的半径为1,,延长
交
于点
,求△
外接圆的半径.
(本小题满分12分)已知函数(
为常数)的图像与
轴交于点
,曲线
在点
处的切线斜率为-1.
(1)求的值及函数
的极值; (2)证明:当
时,
。