(本小题满分10分)选修4—4;坐标系与参数方程.
已知直线为参数), 曲线
(
为参数).
(Ⅰ)设与
相交于
两点,求
;
(Ⅱ)若把曲线上各点的横坐标压缩为原来的
倍,纵坐标压缩为原来的
倍,得到曲线
,设点
是曲线
上的一个动点,求它到直线
的距离的最小值.
已知,函数
.
⑴若不等式对任意
恒成立,求实数
的最值范围;
⑵若,且函数
的定义域和值域均为
,求实数
的值.
(本小题满分15分)在数列中,
,
.
(1)设.证明:数列
是等差数列;(2)求数列
的前
项和
.
如图,在三棱锥中,点
分别是棱
的中点.
(1)求证://平面
;
(2)若平面平面
,
,求证:
.
在△ABC中,角A,B,C的对边分别为,
,
,且
.
(1)求角的值;
(2)若角,
边上的中线
=
,求
的面积.
已知为常数,且
,函数
,
(是自然对数的底数).
(1)求实数的值;
(2)求函数的单调区间;
(3)当时,是否同时存在实数
和
(
),使得对每一个
,直线
与曲线
都有公共点?若存在,求出最小的实数
和最大的实数
;若不存在,说明理由.