(本小题满分12分)有A、B、C、D、E五位工人参加技能竞赛培训.现分别从A、B二人在培训期间参加的若干次预赛成绩中随机抽取8次.用茎叶图表示这两组数据如下:
(Ⅰ) 现要从A、B中选派一人参加技能竞赛,从平均状况和方差的角度考虑,你认为派哪位工人参加合适?请说明理由;
(Ⅱ) 若从参加培训的5位工人中选2人参加技能竞赛,求A、B二人中至少有一人参加技能竞赛的概率.
(本小题满分12分)
在股票市场上,投资者常参考股价(每一股的价格)的某条平滑均线(记作MA)的变化情况来决定买入或卖出股票。股民老王在研究股票的走势图时,发现一只股票的MA均线近
期走得很有特点:如果按如图所示的方式建立平面直角坐标系xoy,则股价y(元)和时间x的关系在ABC段可近似地用解
析式
来描述,从C点走到今天的D点,是震荡筑底阶段,而今天出现了明显的筑底结束的标志,且D点和C点正好关于直线
对称。老王预计这只股票未来的走势如图中虚线所示,这里DE段与ABC段关于直线
对称,EF段是股价延续DE段的趋势(规律)走到这波上升行情的最高点F。
现在老王决定取点,点
,点
来确定解析式中的常数
,并且已经求得
。
(1)请你帮老王算出,并回答股价什么时候见顶(即求F点的横坐标);
(2)老王如能在今天以D点处的价格买入该股票5000股,到见顶处F点的价格全部卖出,不计其它费用,这次操作他能赚多少元?
(本题满分10分) 选修4—5:不等式选讲
(1)解关于x的不等式;
(2)若关于的不等式
有解,求实数
的取值范围.
.(本题满分10分) 选修4—4:坐标系与参数方程
已知曲线C1的极坐标方程为,曲线C2的极坐标方程为
,曲线C1,C2相交于点A、B.
(1)分别将曲线C1,C2的极坐标方程化为直角坐标方程;
(2)求弦AB的长.
(本题满分10分)选修4-1:几何证明选讲
如图,圆O的直径AB=10,弦DE⊥AB于点H,AH=2.
(1)求DE的长;
(2)延长ED到P,过P作圆O的切线,切点为C,若PC=2,求PD的长.