如图,在四棱锥P—ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,PA=AB=4, G为PD中点,E点在AB上,平面PEC⊥平面PDC.
(Ⅰ)求证:AG⊥平面PCD;
(Ⅱ)求证:AG∥平面PEC;
(Ⅲ)求点G到平面PEC的距离.
判断下列语句是不是命题,如果k,,,是,说明是全称命题还是特称命题.
(1) 任何一个实数除以1,仍等于这个数;
(2) 三角函数都是周期函数吗?
(3) 有一个实数,
不能取倒数;
(4) 有的三角形内角和不等于
已知设P:函数
在R上单调递减; Q:不等式
的解集为R,若“P或Q”是真命题,“P且Q”是假命题,求
的取值范围.
[解题思路]:“P或Q”是真命题,“P且Q”是假命题,根据真假表知,P,Q之中一真一假,因此有两种情况,要分类讨论.
分别指出下列复合命题的形式及构成它的简单命题:
(1)3是质数或合数.
(2)他是运动员兼教练员.
(3)相似三角形不一定是全等三角形.
写出由下述各命题构成的“p或q”,“p且q”,“非p”形式的复合命题,并指出所构成的这些复合命题的真假。
(1)p:5是17的约数,q:5是15的约数.
(2)p:方程x2-1=0的解是x="1," q:方程x2-1=0的解是x=-1,
(3)p:不等式的解集为R,q:不等式
的解集为
分别写出下列各组命题构成的“p或q”“p且q”“非p”形式的复合命题:
(1)p:是无理数,q:
大于是2
(2)p:,q:
(3)p: , q: