在边长为a的正方形ABCD中,分别为BC,CD的中点,
、
分别为AB、CF的中点,现沿AE、AF、EF折叠,使B、C、D三点重合,构成一个三棱锥
,如图所示.
(1)在三棱锥中,求证:
;
(2)求四棱锥的体积.
P为圆A:上的动点,点
.线段PB的垂直平分线与半径PA相交于点M,记点M的轨迹为Γ.
(1)求曲线Γ的方程;
(2)当点P在第一象限,且时,求点M的坐标.
甲、乙、丙三个车床加工的零件分别为350个,700个,1050个,现用分层抽样的方法随机抽取6个零件进行检验.
(1)求从甲、乙、丙三个车床中抽取的零件的件数;
(2)从抽取的6个零件中任意取出2个,已知这两个零件都不是甲车床加工的,求其中至少有一个是乙车床加工的零件.
在中,角
的对边分别为
,且
.
(1)求的值;
(2)若成等差数列,且公差大于0,求
的值.
已知函数,
,
.
(1)若当时,恒有
,求
的最大值;
(2)若当时,恒有
,求
的取值范围.
已知直线的参数方程为
,(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为
.
(1)把圆C的极坐标方程化为直角坐标方程;
(2)将直线向右平移h个单位,所得直线
与圆C相切,求h.