设椭圆中心在坐标原点,
是它的两个顶点,直线
与
相交于点
,与椭圆相交于
两点.
(Ⅰ)若
,求
的值;
(Ⅱ)求四边形
面积的最大值.
(本小题满分12分)
如图,已知正三棱柱ABC—A1B1C1的底面边长是2,D是CC1的中点,直线AD与侧面BB1C1C所成的角是45°.
(I)求二面角A—BD—C的大小;
(II)求点C到平面ABD的距离.
(本小题满分10分)
已知A,B,C是的三个内角,向量
,
,且
.
(I)求角A;
(II)若的值.
设x1,x2是函数的两个极值点,且
。
(1)用a表示,并求出a的取值范围.
(2)证明: .
(3)若函数,证明:当
且x1<0时,
.
(本题满分12)
定义在R上的函数满足
,当2≤x≤6时,
。
(1)求m ,n的值;
(2)比较与
的大小
已知函数其中a>0,e为自然对数的底数。
(I)求
(II)求的单调区间;
(III)求函数在区间[0,1]上的最大值。