统计局就某地居民的月收入情况调查了10 000人,并根据所得数据画了样本频率分布直方图,每个分组包括左端点,不包含右端点,如第一组表示收入在元之间。
(1)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这10 000人中用分层抽样方法抽出100人作进一步分析,则月收入在的应抽取多少人;
(2)根据频率分布直方图估计样本数据的中位数;
(3)根据频率分布直方图估计样本数据的平均数.
已知,数列
的前
项和为
,点
在曲线
上
且
,
.
(1)求数列的通项公式;
(2)数列的前
项和为且
满足
,试确定
的值,使得数列
是等差数列;
(3)求证:,
.
如图,在平面直角坐标系中,离心率为
的椭圆
的左顶点为
,过原点
的直线(与坐标轴不重合)与椭圆
交于
两点,直线
分别与
轴交于
两点,若直线
斜率为
时,
.
(1)求椭圆的标准方程;
(2)试问以为直径的圆是否经过定点(与直线
的斜率无关)?请证明你的结论.
如图,在直三棱柱中,平面
侧面
且
.
(1)求证:;
(2)若直线与平面
所成的角为
,求锐二面角
的大小.
设函数
(1)求的最大值,并写出使
取最大值时
的集合;
(2)已知中,角
,
,
的对边分别为
,
,
,若
,
,求
的最小值.
设二次函数满足下列条件:
①当时,其最小值为0,且
成立;
②当时,
恒成立.
(1)求的值;
(2)求的解析式;
(3)求最大的实数,使得存在
,只要当
时,就有
成立