化简 (3a2)2
(3a
2)2
如图,反比例函数 的图象与一次函数 的图象相交于 , 两点.
(1)求反比例函数和一次函数的解析式;
(2)设直线 交 轴于点 ,点 是 轴正半轴上的一个动点,过点 作 轴交反比例函数 的图象于点 ,连接 , .若 ,求 的取值范围.
2021年,黄冈、咸宁、孝感三市实行中考联合命题,为确保联合命题的公平性,决定采取三轮抽签的方式来确定各市选派命题组长的学科.第一轮,各市从语文、数学、英语三个学科中随机抽取一科;第二轮,各市从物理、化学、历史三个学科中随机抽取一科;第三轮,各市从道德与法治、地理、生物三个学科中随机抽取一科.
(1)黄冈在第一轮抽到语文学科的概率是 ;
(2)用画树状图或列表法求黄冈在第二轮和第三轮抽签中,抽到的学科恰好是历史和地理的概率.
如图,在 和 中, , .
(1)求证: ;
(2)若 , ,求 的长.
计算: .
如图,在平面直角坐标系中,四边形 为正方形,点 , 在 轴上,抛物线 经过点 , 两点,且与直线 交于另一点 .
(1)求抛物线的解析式;
(2) 为抛物线对称轴上一点, 为平面直角坐标系中的一点,是否存在以点 , , , 为顶点的四边形是以 为边的菱形.若存在,请求出点 的坐标;若不存在,请说明理由;
(3) 为 轴上一点,过点 作抛物线对称轴的垂线,垂足为 ,连接 , ,探究 是否存在最小值.若存在,请求出这个最小值及点 的坐标;若不存在,请说明理由.