游客
题文

如图,在平面直角坐标系中,四边形 ABCD 为正方形,点 A B x 轴上,抛物线 y = x 2 + bx + c 经过点 B D ( - 4 , 5 ) 两点,且与直线 DC 交于另一点 E

(1)求抛物线的解析式;

(2) F 为抛物线对称轴上一点, Q 为平面直角坐标系中的一点,是否存在以点 Q F E B 为顶点的四边形是以 BE 为边的菱形.若存在,请求出点 F 的坐标;若不存在,请说明理由;

(3) P y 轴上一点,过点 P 作抛物线对称轴的垂线,垂足为 M ,连接 ME BP ,探究 EM + MP + PB 是否存在最小值.若存在,请求出这个最小值及点 M 的坐标;若不存在,请说明理由.

科目 数学   题型 解答题   难度 困难
知识点: 二次函数的性质 待定系数法求二次函数解析式 二次函数综合题
登录免费查看答案和解析
相关试题

(年贵州省铜仁市)如图,一艘轮船航行到B处时,测得小岛A在船的北偏东60°的方向,轮船从B处继续向正东方向航行200海里到达C处时,测得小岛A在船的北偏东30°的方向.己知在小岛周围170海里内有暗礁,若轮船不改变航向继续向前行驶,试问轮船有无触礁的危险?(≈1.732)

(年贵州省遵义市)如图是某儿童乐园为小朋友设计的滑梯平面图.已知BC=4米,AB=6米,中间平台宽度DE=1米,EN,DM,CB为三根垂直于AB的支柱,垂足分别为N,M,B,∠EAB=,DF⊥BC于F,∠CDF=
求DM和BC的水平距离BM的长度.(结果精确到0.1米,参考数据:sin≈0.52,cos≈0.86,tan≈0.60)

(年贵州省铜仁市)已知,如图,点D在等边三角形ABC的边AB上,点F在边AC上,连接DF并延长交BC的延长线于点E,EF=FD.
求证:AD=CE.

(年新疆乌鲁木齐市)如图,小俊在A处利用高为1.5米的测角仪AB测得楼EF顶部E的仰角为30°,然后前进12米到达C处,又测得楼顶E的仰角为60°,求楼EF的高度.(结果精确到0.1米)

(年云南省昆明市)如图,两幢建筑物AB和CD,AB⊥BD,CD⊥BD,AB=15cm,CD=20cm,AB和CD之间有一景观池,小南在A点测得池中喷泉处E点的俯角为42°,在C点测得E点的俯角为45°(点B、E、D在同一直线上),求两幢建筑物之间的距离BD(结果精确到0.1m).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号